

NATIONAL INSTITUTE FOR HEALTH AND WELFARE

Patient record data and patient safety monitoring: reviewing the evidence on trigger tools P. Doupi, MD. PhD

NSQH 2012, Copenhagen 06.03.2012

Understanding patient safety...

NATIONAL INSTITUTE FOR HEALTH AND WELFARE

Global Trigger Tool

- a (paper-based) method developed by the IHI* in the US
- Structured review criteria ("triggers") combined with specific training for review and implementation guidance – address reliability problems
- Emphasis: Patient HARM Actual ADVERSE EVENTS; not errors or near-misses
- Purpose: means for following patient safety levels within an organisation over time, allowing longitudinal comparisons and assessment of patient safety measures implemented. Also, identify target areas for improvement.

* Institute for Healthcare Improvement

GTT – Development history

- Computerized versions of trigger tools (1990)
 Classen et al. Computerized surveillance of adverse drug events in hospital patients. JAMA 1991;266:2847-51
- Paper-based IHI trigger tool for ADEs (1999 2003)
- Various other trigger tools (primary care, surgery, pediatric, ICU) (2002-2006)
- GTT: Development start 2004 publication 2007
 FOCUS

 Address the shortcomings of full structured record review (according to Harvard Medical Practice study) and lack of computerized hospital environments

GTT: current status & trends

- Currently used in several national scale initiatives:
 - Medicare services (as part of combination of methods)
 - Scottish Patient Safety Programme
 - Nordic countries: Sweden, Norway, Denmark (pilot)
- Move towards cross-organisational comparisons, even though originally explicitly presented as not fit for the purpose
 - Prerequisites: standardization of measures; agreement on preventability
- Increased demand for & exploration of automation (eg. Kaiser Permanente, Swedish Patient Safety Initiative)

Background

Nordic Ministers Council work on healthcare quality indicators

Partnership:

 Tampere University Hospital & National Institute for Health and Welfare (THL)

Two complementary objectives:

- Testing suitability and applicability of an adapted trigger tool for adverse events detection in neurosurgery and neurology patients through Electronic Patient Record (EPR) systems
- Exploring requirements and potential barriers for implementation of automated trigger tools through structured EPR systems in Finnish hospitals – suitability of the national core data set.

Methods

- Literature review
 - Phase 1: Focus on supporting the neurosurgery pilot and scoping the field
 - Phase 2: (Computerized) Trigger tools in OvidMedline- and EBM databases (6/2010)
 - Experiences and approaches used
 - Implementation requirements & success factors
 - Development needs for structured EPRs
 - Phase 3: Update (7/2011) & analysis of the GTT evidence
- Minimum data set and trigger cross-tabulation (GTT & Neurosurgery pilot triggers)
 - Assess the coverage of coded data for trigger identification
 - Identify development areas

GTT: What has been studied

- 8 studies, focusing on:
 - development and evaluation (1 study)
 - performance features (2 studies focus on different types of reviewer teams)
 - comparisons with other methods (AHRQ Patient Safety Indicators and organisations' voluntary incident reporting systems – 2 studies)
 - examples of utilization either within or across large health systems or in national level programmes (3 studies).

How it has been studied

- Retrospective, cross-sectional studies of medical records of discharged patients.
- Adult acute and/or long term inpatient care in US hospitals (2-10 participating hospitals) – exception: one study in Thailand.
- Two-stage record review (lots of variations)
- Size sample: The number of records reviewed by the GTT method varied from 65 to about 2400.
- Duration of analysis period: one to six years (except Thailand: one month of hospitalizations)

Inter-rater Reliability

- Variable, depending on:
 - object of review (presence of an AE, severity, preventability)
 - type of reviewers compared (nurses vs. physicians, internal vs. external reviewer teams etc).
- Levels (k co-efficient) of agreement: moderate to substantial (0,40 -0,80) sometimes stronger agreement - internal reviewers in the study of Sharek et al.

(Health Services Research 2011; 46(2):654-678)

Results reporting I

Measure	# of studies	Results
Adverse events per 1,000 patient days	4	41.6 - 91
Adverse events per 100 admissions	5	18,1 - 49
Percent of admissions with an adverse event	4	25 – 33.2

Results reporting II

Severity

- National Coordinating Council for Medication Error Reporting and Prevention (NCC MERP) classification.
- >50% of events assigned to category E (temporary harm to the patient that required intervention).

Preventability

- assessed in 3 studies results published in 2
- subjective judgement of the physician reviewers and variations of a 4-level Likert scale
- 51.7% and 63.1% preventable injuries (last study not reported yet)

Resources for GTT implementation

Review – IHI estimates:
 3 -4 hours of mid-level staff time for each reviewer about 30 minutes of physician time (per data point).

IN ADDITION:

- Modification or fitting of the method to local context
- Training
- Development, testing and validation of a tool for application in a previously unexplored clinical domain

Structured record review: the criticism

- Relies heavily on patient records, hence dependent on the quality of documentation. If adverse events are not documented properly, they will not be detected.
- Dependent on trigger criteria: only those adverse events are detected that result in one of the trigger criteria of the review method.
- Interobserver variability is very high, especially with regard to the judgements on causality and preventability. Generally moderate interobserver agreement scores (according to the k statistic).
- Retrospective method no direct impact on patient care of those included
- Resource intensive more suitable for research rather than management

ATIONAL INSTITUTE FOR HEALTH AND WELFARE

GTT: the criticism

- Relatively new method (2003 -2007) most of its assessment from developer team members (objectivity?)
- Limited evidence (8 studies until June 2011)
- Development phase: highly resource intensive (e.g.IHI medication tool: 86 hospitals, review of 2837 records)
- Reliability of reviewers: variable
- Validity and interpretation of the results
- Preventability not assessed
- Moderate resource savings (screening) still need to review when triggers are found + additional resources needed (training, adaptation etc)

GTT: the strengths

- Large number of events detected compared to other detection methods
- Events which would have gone unnoticed by other standard methods

Bringing monitoring to the hospital level

Use of the GTT can **supplement** incident reporting and other interventions as:

- a way of understanding the types of adverse events;
- and following up changes in adverse event levels occurring in an organisation

Adding new features for learning

- Baylor Health Care System (BHCS) an integrated healthcare delivery system in North Texas.
 Eight general acute care hospitals, two inpatient cardiovascular hospitals and two rehabilitation/long term acute care hospitals (Good et al, 2011).
- BHCS developed fields to permit further characterisation of AEs to identify learning opportunities. A structured narrative description of each identified AE facilitated text mining to further characterise AEs.
- Swedish MAG same feature through portal application
- Clear connection between the assessment of preventability (as well as the description of adverse events) and the use of the GTT for learning and improvement.

GTT Implementation advice the Nordic view

- Experiment with internal and external reviewers former more reliable
- Reproducibility: good training, same team for over a year, suitable place to work, true to methodology, log of harm cases & discussions
- Plan who should have access to the results and how they will be disseminated
- Assistance by an experienced statistician (hotline at hospital or regional level) in the final processing of data
- Continuous national level development and validation, assessment in an international environment (proposed Nordic Cooperation on GTT)

Implementation cornerstones

- Ensure Documentation/Data Quality completeness, accuracy
- Agreement on the core patient safety definitions particularly adverse events and preventability
- Alignment of human and organisational factors
 - Leadership commitment
 - Clinician involvement
- Combine different methods for patient monitoring to get a more comprehensive & accurate picture (e.g. voluntary reporting, trigger tools, registers)
- Think the whole process cycle of implementation & follow up: from development and training, to feedback for learning and action for improvement

Computerized trigger tools

Computerization of trigger tools

- View of IHI:
 - many triggers can be directly captured from IS, particularly medication and lab values (time saving)
 - preceded by record selection process
 - some triggers not possible to automate require review of progress notes
- NOTE: Purpose is still the post-hoc assessment of harm incidence

Automation of the GTT

Sweden

- Semi-automated method based on data mining for identification of triggers – risk profile/selection & review remain manual
- Combination with incident report (description)
- Use in analysing cases of patient deaths (all cases in Karolinska 2008, subset Neurosurgery 2009)
- Follow-up of experiences from wide use of both the manual method and the automated tool (08/2011)

Kaiser Permanente

- Automation based on coded data specific data fields
- Challenges: multiple locations of relevant data & local configurations

Computerized trigger tools: Findings

- Most computerized trigger implementations concern Adverse Drug Events
- Experiences in organisations with:
 - long tradition in ICT utilization
 - In-house development of tailored health-IT systems
- Critical success factors:
 - Simple & reliable access to relevant clinical data, ideally in coded form
 - Combination of data from disparate systems data warehouse
 - Clinician involvement & relevance of system output
 - Commitment of clinical resources & institutional support to improve quality of care

NATIONAL INSTITUTE FOR HEALTH AND WELFARE

Future target: Real-time systems

- Measurements through real-time surveillance provide an additional safety net allowing intervention
 - DSS: focus on prevention
 - Retrospective surveillance/reporting: detection
- Requirement: moving beyond manual reporting to both electronic data analysis and automated tools for notification
- Coded data: essential, but must be also available in real-time (not post-hoc)
- Verifying accuracy of the system is critical to avoid too many false alarms
- Preventability of AE challenging to determine

Thank you!

Further information: persephone.doupi@thl.fi

•

NATIONAL INSTITUTE FOR HEALTH AND WELFARE